skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holland, David_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thwaites Glacier is one of the fastest‐changing ice‐ocean systems in Antarctica. Basal melting beneath Thwaites' floating ice shelf, especially around pinning points and at the grounding line, sets the rate of ice loss and Thwaites' contribution to global sea‐level rise. The rate of basal melting is controlled by the transport of heat into and through the ice–ocean boundary layer toward the ice base. Here we present the first turbulence observations from the grounding line of Thwaites Eastern Ice Shelf. We demonstrate that contrary to expectations, the turbulence‐driven vertical flux of heat into the ice–ocean boundary layer is insufficient to sustain the basal melt rate. Instead, most of the heat required must be delivered by lateral fluxes driven by the large‐scale advective circulation. Lateral processes likely dominate beneath the most unstable warm‐cavity ice shelves, and thus must be fully incorporated into parameterizations of ice shelf basal melting. 
    more » « less
  2. Abstract The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2. 
    more » « less
  3. Abstract Structural imaging of transient excited-state species is a key goal of molecular physics, promising to unveil rich information about the dynamics underpinning photochemical transformations. However, separating the electronic and nuclear contributions to the spectroscopic observables is challenging, and typically requires the application of high-level theory. Here, we employ site-selective ionisation via ultrashort soft X-ray pulses and time-resolved Coulomb explosion imaging to interrogate structural dynamics of the ultraviolet photochemistry of carbon disulfide. This prototypical system exhibits the complex motifs of polyatomic photochemistry, including strong non-adiabatic couplings, vibrational mode couplings, and intersystem crossing. Immediately following photoexcitation, we observe Coulomb explosion signatures of highly bent and stretched excited-state geometries involved in the photodissociation. Aided by a model to interpret such changes, we build a comprehensive picture of the photoinduced nuclear dynamics that follows initial bending and stretching motions, as the reaction proceeds towards photodissociation. 
    more » « less